Código - NOME DISCIPLINA Operações Unitárias I

Curso: Eng Alimentar Ano Curricular: 2º (Ramo / Especialidade:)
Anual [] Semestral: 1º [] 2º [X] Trimestral: 1º [] 2º [] 3º []

Créditos: ECTS 6 Nível: 1º ciclo Obrigatória [x] Opcional []

Idioma: Português

Docente(s): Suzana Ferreira Dias, Isabel Miranda

Endereço Web:

1. Horas de contacto: 84

Teóricas Práticas Teórico-Práticas 56 Laboratoriais 14 Outras 14

Total 84

2. Objectivos:

Compreensão do conceito de operação unitária. Estudo das seguintes operações unitárias: moenda, sedimentação, centrifugação, filtração clássica, secagem e evaporação. Aplicações a casos industriais e dimensionamento do equipamento.

3. Programa:

Conceito de operação unitária e sua importância no estudo dos processos industriais. Caracterização de partículas sólidas; moenda. Operações unitárias que envolvem apenas transferência de massa: sedimentação livre; centrifugação; filtração clássica. Operações unitárias que envolvem transferência de massa e/ou de calor: secagem (clássica) e psicrometria; permutadores de calor; evaporação (efeito simples e múltiplo em co e contracorrente).

4. Bibliografia:

Bibliografia Principal

Bayazitoglu, Y., Ozisik, M.N. (1988), Elements of Heat Transfer, McGraw-Hill International Editions, New York.

Earle, R.L. (1985), Unit Operations in Food Processing, Pergamon Press.

http://www.nzifst.org.nz/unitoperations/httrtheory.htm

Geankoplis, C.J. (1986), *Transport Processes and Unit Operations*, 3ª Edição, Prentice-Hall International, Inc.

Bibliografia Complementar

McCabe, W.L., Smith, J.C., Harriot, P. (1993) *Unit Operations of Chemical Engineering*, McGraw-Hill, Inc., 5ª Edição, New York.

5. Regras de Avaliação:

Para obter frequência, é necessário:

- Frequentar 75 % das aulas práticas de problemas, ou seja, 9 aulas P das 12.
- Realizar **trabalho laboratorial,** apresentar os resultados oralmente e em forma de relatório escrito (máximo 10 páginas). O **relatório** deverá ser entregue impresso até dia **6 de Junho de 2019.** O Relatório de Trabalho Laboratorial representa 20% da nota final da U.C.
- O **Exame final** será realizado na época de exame e representa 80% da nota final.

Para aprovação na disciplina é necessária a **nota mínima de 9,5 valores** tanto no **exame** como no **relatório do trabalho laboratorial**.

Operações Unitárias I

Programa Detalhado:

1. Introdução às Operações Unitárias

- 1.1.Conceito de Operações Unitárias
- 1.2. Classificação das operações unitárias e exemplos em diferentes sectores industriais.

2. Caracterização de partículas sólidas e redução de dimensões

- 2.1. Caracterização e propriedades das partículas sólidas
- 2.2. Objectivos da redução de dimensões
- 2.3. Forças envolvidas na operação de moenda
- 2.4. Eficiência da moenda
- 2.5. Cálculo do consumo energético da operação (Leis de Kick, de Rittinger e de Bond)
- 2.6. Tipos de moinhos
- 2.7. Separação de partículas e classificação por dimensões (análises diferencial e cumulativa)

3. Operações de Separação

- 3.1. Sedimentação
 - 3.1.1. Princípios gerais
 - 3.1.2. Sedimentação livre
 - 3.1.3. Decantadores: intermitentes e contínuos; espessadores

3.2. Centrifugação

- 3.2.1. Princípios gerais
- 3.2.2. Tipos de Centrífugas
- 3.2.3. Dimensionamento de centrífugas
- 3.2.4. Ciclones

3.3. Filtração Clássica

- 3.3.1. Princípios gerais
- 3.3.2. Filtração a caudal constante e a pressão constante
- 3.3.3. Tipos de filtros
- 3.3.4. Dimensionamento de filtros
- 3.3.5. Lavagem do bolo de filtração

4. Permutadores de calor

- 4.1. Classificação
- 4.2. Perfis de temperatura nos diferentes tipos de permutadores
- 4.3. Cálculo dos coeficientes globais de transferência de calor nos permutadores; contabilização das incrustações.
- 4.4. Dimensionamento de permutadores
 - 4.4.1. Método da média logarítmica das diferenças de temperatura
 - 4.4.2. Factor de correcção para permutadores de passes múltiplos e de fluxos cruzados
- 4.4.3. Método da eficiência (ε-NTU)

5. Secagem

- 5.1. Teoria-base da secagem: os três estados da água; necessidades de calor na vaporização; transferência de calor e de massa na secagem
- 5.2. Psicrometria
 - 5.2.1. Temperaturas do termómetro seco e do termómetro húmido
 - 5.2.2. Cartas psicrométricas: sua utilização
- 5.3. Teor de humidade de equlíbrio dos materiais
- 5.4. Curvas de velocidade de secagem
- 5.5. Métodos de cálculo do período de secagem a velocidade constante
- 5.6. Métodos de cálculo do período de secagem a velocidade decrescente
- 5.7. Equipamento de secagem

6. Evaporação

- 6.1. Definição e objectivos
- 6.2. Tipos de evaporadores e modos operatórios
- 6.3. Coeficientes globais de transferência de calor nos evaporadores
- 6.4. Elevação do ponto de ebulição: regra de Dürhing
- 6.5. Dimensionamento dos evaporadores de efeito simples
- 6.6. Dimensionamento dos evaporadores de efeito múltiplo
- 6.7. Recompressão de vapor
- 6.8. Evaporação de materiais termo-sensíveis.

Calendarização

Ano lectivo: 2018/2019

Jnidade Curricular:	Operações unitárias I	Curso: _Engenharia Alimentar Turmas:7	e 8
Responsável da UC: _	Suzana Ferreira Dias	Ciclo de Estudos: 1º ciclo	

Horário lectivo:

3ª feira: 15:30-17:30 h (sala 12, T) 5ª feira: 9:00-12:00 h (A3) Turma 7 (P) 6º feira: 9:00-12:00 h (sala 12) Turma 8 (P)

Horário de atendimento aos alunos: combinado entre os docentes e os alunos

Docentes que leccionam: Suzana Ferreira Dias, Isabel Miranda

Aula	Data	Sumário	Nome e assinatura
1	19 Fev (T)	Apresentação das regras e do	Suzana Ferreira-Dias
		programa da UC; conceito de	
		Operações Unitárias e exemplos	
2	21 Fev (P)	Caracterização e propriedades das	Isabel Miranda
	22Fev (P)	partículas sólidas; separação de	
		partículas e classificação por	
		dimensões.	
3	26 Fev (T)	Trituração: objectivos e forças	Isabel Miranda
		envolvidas. Cálculo do consumo	
		energético e eficiência da trituração;	
		tipos de moinhos.	
4	28 Fev (P)	Centrifugação: fundamentos teóricos e	Isabel Miranda
	1 Março (P)	problemas de aplicação a casos de	
		estudo.	
5	7 Março (P)	Sedimentação livre: fundamentos	Suzana Ferreira-Dias
	8 Março (P)	teóricos e problemas de aplicação.	
6	12 Março	Sedimentação influenciada:	Suzana Ferreira-Dias
	(T)	fundamentos e problemas de	
		aplicação. Decantadores intermitentes	
		e contínuos; espessadores.	
7	14 Mar (P)	Classificação de sólidos: "sink and	Suzana Ferreira-Dias
	15 Mar (P)	float" e sedimentação diferencial;	
		problemas de aplicação	
		Velocidade de sedimentação:	
		problemas de aplicação.	
8	19 Mar (T)	Permutadores de calor: revisões sobre	Isabel Miranda
		a transferência de calor; fundamentos	
		e modo de funcionamento dos	
		permutadores.	
9	21 Março (P)	Permutadores de calor: métodos de	Isabel Miranda
	22 Março (P)	dimensionamento. Problemas de	
		aplicação a permutadores simples e de	
		passe múltiplo	
10	26 Março (T)	Permutadores de calor:	Isabel Miranda
		dimensionamento pelo métodos de da	
		eficiência	
11	28 Março (P)	Filtração Clássica: introdução; filtração	Suzana Ferreira-Dias
	29 Março (P)	a caudal constante e a pressão	
		constante; problemas de aplicação.	

	1	T	T
12	2 Abril (T)	Tipos de filtros e seu dimensionamento; lavagem do bolo de filtração. Permutadores de calor: métodos de dimensionamento (continuação).	Suzana Ferreira-Dias
13	4 Abril (P) 5 Abril (P)	Secagem: fundamentos teóricos: teor de humidade de equilíbrio dos materiais. Utilização das cartas psicrométricas: problemas de aplicação	Suzana Ferreira-Dias
14	9 Abril (T)	Utilização das cartas psicrométricas: problemas de aplicação (continuação)	Suzana Ferreira-Dias
15	11 Abril (P) 12 Abril (P)	Cálculo da velocidade de secagem; tipos de secadores e dimensionamento	Suzana Ferreira-Dias
16	16 Abril (T)	Cálculo da velocidade de secagem; tipos de secadores e dimensionamento (conclusão).	Isabel Miranda
17	30 Abril (T)	Trabalhos Laboratoriais	Isabel Miranda
18	2 Maio (P) 3 Maio (P)	Trabalhos Laboratoriais	Isabel Miranda
19	7 Maio (T)	Trabalhos Laboratoriais	Isabel Miranda
20	9 Maio (P) 10 Maio (P)	Trabalhos Laboratoriais	Isabel Miranda
21	14 Maio (T)	Trabalhos Laboratoriais	Isabel Miranda
22	16 Maio (P) 17 Maio (P)	Evaporação: fundamentos teóricos e objectivos da operação; tipos de evaporadores e modo de funcionamento.	Suzana Ferreira-Dias
23	21 Maio (T)	Evaporação: dimensionamento de evaporadores de efeito simples e de efeito múltiplo.	Suzana Ferreira-Dias
24	23 Maio (P) 24 Maio (P)	Apresentação de trabalhos	Suzana Ferreira-Dias
25	29 Maio (T)	Apresentação de trabalhos	Suzana Ferreira-Dias
26	30 Maio (P) 31 Maio (P)	Evaporação: dimensionamento de evaporadores de efeito múltiplo (conclusão); elevação do ponto de ebulição; regra de Durhing.	